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Abstract

The studies, which involve the potential of imaging spectrometry, are among the most promising ones in forest
health assessment. This study estimated crown defoliation and the concentrations of some chemical constituents in the
needles of Scots pine (Pinus sylvestris L.) trees using laboratory acquired hyperspectral data. Needle samples from 67
Scots pine trees, which showed crown defoliation within the range from 0% to 80% (using 5% gradation), were collected
in two mature stands located in the eastern Lithuania. The concentrations of ten chemical elements in the needles were
also measured. The hyperspectral reflectance data of the needle samples was recorded under laboratory conditions using
a VNIR 400H portable hyperspectral imaging camera operating in the 400—1,000 nm range. Principal component analysis
and linear discriminant analysis were used to classify the needle samples into defoliation classes and partial least squares
regression was used to predict the concentration of chemical constituents by means of hyperspectral reflectance data.
Spectral reflectance data was found to poorly discriminate the needle samples into defoliation classes assessed using 5%
steps (kappa statistic was 0.29 and 0.26 for the previous and current year needles, respectively). However, combining
the samples into four damage classes, according to the UNECE/FAO definition (none: under 10%; slight: > 10-25%;
moderate: > 25-60% and severe: over 60%) improved the spectral reflectance data discrimination ability significantly
for the previous year (kappa statistic was 0.50), but not significantly for the current year (kappa statistic was 0.35)
needles. Classification into three damage classes (under 30%; > 30-50% and over 50%) was perfect (kappa statistic 1.0).
A moderate prediction potential was found for the nitrogen (correlation coefficient between actual and predicted values
estimated using cross-validation, R = 0.61), phosphorus (R = 0.57), zinc (R = 0.57), calcium (R = 0.56), manganese (R
= 0.49) and potassium (R = 0.40) concentrations, but was poor for boron (R = 0.33), iron (R = 0.26), magnesium (R =
0.20) and copper (R = 0.20) in the current year needles.
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Introduction

In Lithuania, forest health has been monitored for
more than 25 years (Ozolincius and Stakénas 1996).
Tree crown defoliation is considered to be one of the
key indicators of tree health (Ozolincius 1999). Assess-
ment of tree crown defoliation in forests represents an
early warning system for the response of forest eco-
systems to various stress factors (Fischer et al. 2012)
and estimation of this parameter is based mainly on
field measurements that visually assess the density of
tree crowns in forests (Eichhorn et al. 2010). Defolia-
tion assessment, therefore, relies on the experience and
skills of the observer and tends to have some level of
subjectivity (Ferretti 1998). Furthermore, the method
is very time and labour consuming.

Remote sensing is considered to be an operational
tool in forest health assessment, already was used for

several decades and is discussed in numerous research
and technical publications (Ciesla 2000, Solberg et al.
2004, Wulder et al. 2006). The solutions range from
satellite imagery based techniques (Ciesla et al. 1989,
Hildebrandt 1993, Zawila-Niedzwiecki 1996, Ardo 1998,
Heikkild 2002) to aerial photography applications (Kuhl
1989, Wulder et al. 2006). In Lithuania, some studies
attempted to utilize the potential of remote sensing to
assess forest health over extensive areas. The possi-
bilities of estimating tree crown defoliation were ex-
amined using spectrazonal aerial photography (Daniulis
and Mozgeris, 1993) and digital orthophotos based on
conventional and small-format aerial photography ac-
quired using ultra-light aircraft (Eigirdas et al. 2013,
Mozgeris and Augustaitis 2013). Nevertheless the ex-
perience gained from these studies was never practi-
cally introduced into forest health monitoring. One of
the possible reasons was that remote sensing had never
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been found to be superior to visual estimation of tree
crown defoliation in the field. It is usually used for
conventional forest inventory applications and may be
unsuitable for forest health assessment.

The assessment of forest health becomes more
comprehensive, when measurements of chemical con-
stituents in the foliage of forest trees is also included
(Huber et al. 2008, Moorthy et al. 2008, Wang and Li
2012). Along with chlorophyll content, the assessment
of concentrations of macro-elements (nitrogen, potas-
sium and phosphorus) is of special interest because
these elements are the most important ones for the
growth and development of plants (Kokally and Clark
1999, Asner and Martin 2008, Axelsson et al. 2013).
Furthermore, knowing the concentrations of micro-el-
ements (calcium, magnium, zinc, boron, copper, man-
ganese, and iron) could expand our knowledge about
the relationship between the foliage chemical constit-
uents and the condition of forest trees. However, ac-
quiring such information, based on laboratory chemi-
cal analyses, is time consuming and expensive, thus
making them hard to apply in extensive forest health
monitoring projects.

However, along with the progress in technology,
forestry continually gains new and modern solutions
that allow us to obtain information that cannot be
observed by the naked eye and to reduce the amount
of time-consuming field or laboratory work. The hy-
perspectral imaging systems were invented relatively
recently, in the late 1970s (Goetz et al. 1985), and can
sense very subtle differences in the intensity of elec-
tromagnetic radiation. Hyperspectral sensing has be-
come recognised as the most advanced remote sens-
ing technique for collecting and processing reflectance
data from electromagnetic radiation (Im and Jensen
2008, Eismann 2012).

Hyperspectral imaging systems acquire images of
an object in many narrow (nanometre level) contigu-
ous spectral bands. Depending on the construction,
they can sense reflected or emitted electromagnetic
radiation in a range stretching from ultraviolet (from
200 nm) to thermal (up to 15,000 nm) waves (Im and
Jensen 2008). These instruments can collect hundreds
of spectral bands for every pixel of an image. The re-
sult is a ‘package’ of images, in which pixels of each
image are recorded in a single spectral band, i.e. the
amount of images in this ‘package’ is equal to the
number of acquired spectral bands. Such ‘packages’
are called hyperspectral cubes. The XY axis of a cube
represents spatial data and the Z axis represents spec-
tral data. Narrow waveband data has a much greater
potential for discriminating the features of sensed
objects (Lillesand et al. 2008) and hyperspectral im-
aging is considered to have a greater potential for

precise identification, discrimination and classification
of studied objects and their features (Treitz and
Howarth 1999, Im and Jensen 2008).

Utilization of data acquired using hyperspectral
imaging requires specific methodological approaches.
There are two groups of methods used for hyperspec-
tral data analyses: methods for reducing the data di-
mension and methods for information extraction (Hi et
al. 1998, Mitra and Murthy 2002, Bajcsy and Groves
2004). As hyperspectral cubes contain hundreds of
contiguous spectral bands, the neighbouring wave-
bands have a high degree of correlation, which results
in information redundancy through oversampling
(Thenkabail et al. 2004). Thus, the most informative
spectral bands need to be selected for further process-
ing. For hyperspectral images acquired under labora-
tory conditions, widely used methods for data dimen-
sion reduction are dispersion analysis (Manevski et
al. 2011), estimation of coefficients of correlation
(Thenkabail et al. 2000, Gomez-Chova et al. 2004, Ba-
jwa et al. 2009) and principal component analysis (De
Backer et al. 2005, Kalacska et al. 2007, Torbick and
Becker 2009, Song et al. 2011, Hesketh and Sinchez-
Azofeifa 2012, Koonsanit et al. 2012).

The most commonly used methods for information
extraction from hyperspectral data are modelling and
classification (Du and Chang 2000, Gong et al. 2003,
Camps-Valis and Bruzzone 2005, Bajwa and Vories
2007). Modelling is used, when the characteristics
needed for quantification are numerical. A model of a
mathematical relationship is developed based on, for
example, an estimation of chlorophyll, nitrogen and/
or other concentrations of chemical elements in the
foliage of trees (Gong et al. 1995, Gastellu-Etchegorry
et al. 1995, Bajwa and Vories 2007). Classification is
used, when the characteristics of interest are categor-
ical, e.g. if dealing with the recognition of different
forest tree species or land-cover types (Du and Chang
2000, Camps-Valis and Bruzzone 2005). The most widely
used modelling methods are multivariate regression
(Gong et al. 1995, Gastellu-Etchegorry et al. 1995, Ba-
jwa and Vories 2007) and partial least squares regres-
sion (Wold et al. 2001, Smith et al. 2002, McDonald et
al. 2003, Bajwa 2006, Cho et al. 2007, Asner and Mar-
tin 2008, Bajwa et al. 2009, Carrascal et al. 2009). A very
widely used method for classification is discriminant
analysis (Gong et al. 1997, Fung et al. 1998, Du and
Chang 2000, Camps-Valis and Bruzzone 2005, Clark et
al. 2005).

The aim of our study was to evaluate the poten-
tial of laboratory acquired hyperspectral image data to
assess various chemical properties of Scots pine nee-
dles and the crown defoliation status of the tree the
needles were collected from. We aimed to integrate
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particular methodical solutions that assess the diverse
characteristics of Scots Pine needles that could be
used to describe the overall condition of a tree. Scots
pine is one of the most common and commercially
important tree species in Lithuania. According to the
State Forest Service (2012), Scots pine stands make
up 35.1% of the total forest area in Lithuania, is con-
sidered to be a good indicator of environmental con-
ditions and has become the focus of many forest
health related studies (Solberg et al. 2006, Augustaitis
et al. 2007, Juknys et al. 2013).

The objectives of this study included the fol-
lowing:

1. Investigating whether it was possible to deter-
mine the defoliation of Scots Pine crowns using hy-
perspectral imaging under laboratory conditions and
to select the wavebands which best represented the
spectral differences between various crown defoliation
classes.

2. Examining the relationships between the hyper-
spectral reflectance properties of Scots pine needles and
the concentrations of their chemical constituents us-
ing hyperspectral imaging under laboratory conditions.

Materials and Methods

A total of 67 mature Scots pine trees, with crown
defoliation ranging from 0% to 80%, were selected for
foliage spectral sampling. The crown defoliation was
visually assessed in the forest by two experienced
specialists from the Forest Monitoring Laboratory of
‘Aleksandras Stulginskis’ University according to the
methods and criteria for harmonized sampling, assess-
ment, monitoring and analysis of the effects of air
pollution on forests (Eichhorn et al. 2010). Defoliation
assessment is conducted annually, as part of a long
term monitoring programme; in permanent plots locat-
ed in mature Scots pine stands found at the Aukstait-
ija integrated monitoring station. The trees sampled
were located in two forest compartments: a) a pure
Scots pine stand, age: 103 years, mean height: 29 m,
mean diameter (at 1.3 m height): 35 cm, standing vol-
ume: 313 m3/ha, site type: Vaccinio myrtillosa and plot
coordinates according to WGS 1984 coordinate sys-
tem: E25.982, N55.483 and b) a pure Scots pine stand,
age: 178 years, mean height: 31 m, mean diameter (at
1.3 m height): 40 cm, standing volume: 463 m?/ha, site
type: Vaccinio myrtillosa and plot coordinates accord-
ing to WGS 1984 coordinate system: E26.060, N55.449.

Climbing equipment and a telescopic cutter were
used to collect the needle samples. One sample branch
from the western, northern and eastern sides and four
sample branches from the southern side of the mid-
dle-upper part of the crown of each tree were cut

making seven branches per tree in total. To consider
the influence of the needles age, current and previ-
ous year sprouts were collected. The samples were
taken between July 29 and August 10, 2012. The nee-
dles from the branches, which receive maximal solar
radiation, i.e. the ones collected from the southern side
of crowns were also used for chemical analyses (to-
tally 240 branches). The cut samples were immediate-
ly packed into plastic bags. The bags were labelled,
put into portable cooler bags and transported to the
laboratory for immediate spectral measurements, which
were completed within 14 hours of cutting the first
sample. Separate equivalent sub-samples were made
for needles from the current and previous year sprouts
by harvesting every needle from the sprouts.

Analyses of needle chemical constituents were
performed at the Agrochemical Research Laboratory
of the Lithuanian Research Centre for Agriculture and
Forestry. Concentrations of nitrogen, phosphorus,
calcium, magnesium, potassium, iron, copper, manga-
nese, zinc and boron were measured. The element
concentrations in the needles were measured accord-
ing to the requirements of following EEC directives:
nitrogen: 72/199/EEB, phosphorus: 71/393/EEB, calci-
um: 71/250/EEB, magnesium: 73/46/EEB and potassi-
um: 71/250/EEB. The concentrations of iron, copper,
manganese, zinc and boron were measured according
to the requirements of Lithuanian standard LST CEN/
TS 15621:2007.

The prepared samples were scanned using a hy-
perspectral camera VNIR400H. This device was
equipped with a highly sensitive VNIR spectrometer
capable of covering the 400-1,000 nm spectral range
with a sampling interval of 0.6 nm and produced 955
spectral bands. The spatial data from each scanned
sample was recorded in a charged-coupled device
(CCD) array with a 1,392 x 1,000 pixel resolution (pixel
size was 6.45 pm x 6.45 pm). The camera, using a field
of view of 30 degrees, was mounted on a copy stand
and was oriented in the nadir position with the lens
fixed at 33 cm above the sample. Two 100 W halogen
lamps, which can provide stable electro-magnetic ra-
diation in the 400-1,000 nm range, were used for sam-
ple illumination. The halogen lamps were fixed sym-
metrically on both sides of the camera lens and illu-
minated the sample by allowing their light beams to
criss-cross above the sample. The scanning room was
darkened to avoid unrelated spectral signals from
ambient light sources.

The needles were spread on top of a matt black
painted plate so that the background plate was fully
covered by needles. The spectral response of each
needle sample was recorded four times. The back-
ground plate was rotated 90 degrees horizontally af-
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ter every hyperspectral sample to correct for the bidi-
rectional reflectance distribution. These steps were
repeated for all samples. The results were raw hyper-
spectral images of the needle samples (four for each
separate sample).

Next, the radiance curve was converted to a reflect-
ance curve for each image pixel. Completed target meas-
urements were compared against measurements taken
from a reference panel of known spectral reflectances
(Avian Technologies LLC 99% white reference panel).
The spectrometer internal current (dark current) was also
corrected. The resulting spectra were then smoothed
using the Savitzky-Golay filter function with a 4th-or-
der polynomial fit and 25 data points. The steps above
were repeated for each hyperspectral image. Aiming to
have a fixed number of pixels in a standard dimension
grid and each pixel containing only spectral signals
related to the needles spectral reflectance, the images
were then cropped to 400 x 400 pixels in size by spa-
tially subsetting the hyperspectral images. The mean
spectra of latter images were calculated.

Thus, four reflectance curves were derived from
the four needle sample images and then averaged to
construct a single reflectance curve for each sample.
A total of 938 reflectance curves were constructed.
Each reflectance curve was treated as a series of num-
bers (reflectance coefficients) and was used for sta-
tistical analyses. The sizes of samples used in analy-
ses are presented in Table 1.

The distribution of the spectral responses at every
spectral band was tested for normality using the Sha-
piro-Wilk test (¢ = 0.05) and the homogeneity of the
variance was checked using Levene’s test (o= 0.05).
Only the homoscedastic and normally distributed
(p > ) spectral data for every spectral band were used
in further analyses.

Principal component analysis (PCA) was employed
to reduce the dimensionality and redundancy inherent
in hyperspectral data. PCA reduces the data to a set of
orthogonal eigenvectors, which maximize variation and
greatly reduce autocorrelation (Wold 1966). The non-
linear iterative partial least squares (NIPALS) algorithm

was employed in the calculations (Wold 1966, Wold et
al. 1987). In this study, principal component analysis
was used to compute the contribution of the reflect-
ance coming from each wavelength to the principal
components. Wavebands were treated as independent
variables. The reflectance data from all the samples were
analysed. The data were pre-processed using unit var-
iance scaling and mean-centering procedures. Compo-
nent loadings were computed for each latent variable
waveband (principal components (PCs) or factors).
Component loadings represented the relative degree, to
which each variable (waveband) explained the relation-
ship between the component and sampled tree species.
If the component covered a significant portion of the
overall data variance that is related to the differentia-
tion of samples, then the wavebands with the highest
loadings on that component were better suited for de-
foliation differentiation. Therefore the wavebands with
the highest absolute values for component loadings were
selected as most suitable ones for optimally discrimi-
nating various levels of crown defoliation. The aim was
to select as many PCs that, together, explained 99% or
more of the variance.

The subject-related information was extracted af-
ter selecting the most informative wavebands. The
relationship between Scots pine crown defoliation and
needle spectral reflectance properties was assessed by
evaluating the potential to determine the particular
defoliation class. The foliage samples were classified
into defoliation classes by employing linear discrimi-
nant analysis and by using reflectance values from the
most informative wavebands as discriminating varia-
bles. The samples were classified into the following
classes:

1. Nine defoliation classes at 5% interval, i.e. the
classes that are used after visual assessment of the
forest.

2. Four defoliation classes, based on the UNECE
definition (none: up to 10%; slight: >10-25%, moder-
ate: >25-60% and severe: over 60%).

3. Three defoliation classes (up to 30%, > 30-50%
and over 50%).

Table 1. Sample sizes Total
number of
the needle  Samples which data passed the normality tests and were used:
Number
Number of Total samples
of trees
sample number of (separated
selected
for the branches bsamp;]le rf1eed|est
per tree ranches  or curren for building of for validation of
stud
v and for PCAandLDA  p| gR models PLSR models
previous
years)
Current Previous Current Previous Current Previous
year year year year year year
needle needle needle needle needle needle
67 7 469 938 469 420 240 240 80 80
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The overall classification accuracy was estimat-
ed by calculating the proportion of correctly classi-
fied needle samples, compared to the total number of
classified samples. Producer’s accuracy, User’s accu-
racy and kappa statistics were also calculated. The Z
statistic was calculated to check whether the error
matrix kappa statistics for the different classifications
were significantly different, i.e. to check whether the
classification accuracy increased/decreased signifi-
cantly (Congalton and Green 1999).

Partial least squares regression (PLSR) analysis
was used to predict the concentrations of chemical
constituents in needles. PLSR is well suited to ana-
lysing a large array of related predictor variables (i.e.
not truly independent), where the sample size that is
not large enough, when compared to the number of
independent variables (Wold et al. 2001, Carrascal et
al. 2009).

The concentrations of nitrogen, phosphorus, cal-
cium, magnesium, potassium, iron, copper, manganese,
zinc and boron in Scots pine needle samples from
current and previous years were predicted using nee-
dle spectral reflectance data by building partial least
squares regression (PLSR) models. PLSR models were
built independently for each chemical constituent. The
values of one attribute (concentration) of the data set
were used to represent the dependent variable and the
wavelength reflectance values of the needle samples
represented the predictors. The data were pre-proc-
essed using unit variance scaling and mean-centering
procedures. The detected outliers were deducted from
further calculations. The cross-validated determination
coefficient (R?) and correlation coefficient (R) were
calculated for each model. Models were also validat-
ed using external data sets that were created by ran-
domly selecting 30% of the samples from the initial data
sets. The root mean square errors of prediction (RM-
SEP) and mean absolute percentage errors (MAPE)
were estimated. For the best predicted chemical con-
stituents (MAPE not exceeding 11 % in case of previ-
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ous and current year), the wavebands most tightly
related to their concentration in the needles, were iden-
tified. In this study, regression coefficients resulting
from the PLSR models were used for identifying the
most sensitive wavelengths. The central wavebands
situated on the three highest peaks of curves formed
from absolute values of regression coefficients were
found to be the most sensitive ones.

The relationships between crown defoliation and
the chemical constituents of their needles were also
assessed by linear discriminant analysis, which clas-
sified needle samples into three defoliation classes (up
to 30%, >30-50% and over 50%) and used the chem-
ical constituent concentrations as discriminating vari-
ables.

Results

The spectral reflectance properties of needles from
Scots pine crowns showing various levels of defolia-
tion are summarized in Figure 1. The spectral reflect-
ance curves of the needles from crowns with higher
levels of defoliation feature a higher reflectance in the
green—red (495—680 nm) spectral zone and a lower re-
flectance in the near infrared (750—1,000 nm) zone. This
is particularly evident in spectral curves that have
been generalized to present defoliation classes 3 and
4 (Figure 1 b, c, ¢ and f).

PCA revealed, that more than 99% of total spec-
tral reflectance data variance in current (2012) and
previous (2011) year needles was explained by five and
six PCs respectively (Table 2). Thus, the five wave-
bands for the current year needles and the six wave-
bands for the previous year needles were selected as
the optimal ones for discriminating the defoliation
classes. The wavelengths of the optimal bands varied
for current and previous year needles but their posi-
tion in the spectral interval was contiguous.

The ability to spectrally discriminate the needle
samples of differently defoliated Scots pine crowns was

Reflectance, %
s
8

—upto 10% 2 ——

-=->10-25% 20

- = >30-50%
- =>25-60% 15
>60% 10 50%
5 Yo

400 519 645 773 901

400 519 645 773 901 400 519 645 773 901

Wavelength, nm Wavelength, nm Wavelength, nm

Figure 1. Generalized spectral curves for Scots pine needles: a) nine defoliation classes, current year needles, b) four de-
foliation classes, current year needles, c) three defoliation classes, current year needles, d) nine defoliation classes, previous
year needles, e) 4 defoliation classes, previous year needles, f) 3 defoliation classes, previous year needles
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Table 2. Variance explained by the principal components and the wavelengths most sensitive to Scots Pine crown defoliation

Principal component (PC)

PC1 PC2 PC3 PC4 PC5 PC6
Needle age
. Most : Most . . Most . . Most

Varlla_n OZ informative Var||a_n OZ informative Var::noz informative Varlla_n CZ informative Varlla.noz informative Var:a_n OZ informative

expaine wavelength expaine wavelength expaine wavelength expaine wavelength expane wavelength expaine wavelength
Current
year 60.5% 7354 nm 27.7% 969.3 nm 6.2% 7131 nm 3.5% 683.1 nm 1.6% 4069 nm - -
(2012)
Previous
year 52.2% 7374 nm 28.2% 9687 nm 94% 4199 nm 6.4% 6806 nm 2.8% 400.1 nm 0.5% 6882 nm
(2011)

assessed by examining the classification accuracy us-
ing linear discriminant analysis. The reflectance values
of the optimal wavebands were used as discriminating
variables. Samples representing different needle ages
were classified separately. Classification results are sum-
marized in Tables 3—4. The accuracy of classification
into three defoliation classes is not reported in the ta-

bles as all samples are correctly classified, yielding a
100% overall classification accuracy.

The results revealed that it was not possible to
precisely determine nine defoliation classes for Scots
pine crowns (i.e. the ones employed when the trees
are visually assessed according to the methods used
by forest health monitoring surveys) according to

Table 3. The classification accuracy  visually Predicted defoliation, % "Producers”
of Scots pine needle samples (psc.) 22?:?:;:“ % 5 10 15 20 25 30 35 50 8o % accuracy, %
into nine defoliation classes Current year needles
5 0 7 21 7 14 0 0 0 0 49 0.0
10 0 0 42 14 7 14 0 0 0 77 0.0
15 14 0 77 14 0 7 0 0 0 112 68.8
20 0 7 21 21 0 14 0 0 0 63 333
25 0 14 28 7 0 14 0 0 0] 63 0.0
30 0 0 21 0 0 42 0 0 0 63 66.7
35 0 0 0 0 0 0 14 0 0 14 100.0
50 0 0 0 0 0 0 0 14 0 14 100.0
80 0 0 0 0 0 0 0 0 14 14 100.0
Total 14 28 210 63 21 91 14 14 14 469
Users o 0.0 0.0 36.7 33.3 0.0 46.2 100.0 100.0 100.0
accuracy, %
Kappa statistic 0.26 Overall classification accuracy, % 38.8
Previous year needles
5 7 14 21 0 0 0 0 0 49 14.3
10 7 14 14 28 7 0 0 0 0 70 20.0
15 14 7 56 14 0 0 0 0 0 91 61.5
20 7 7 35 21 0 0 0 0 0 70 30.0
25 7 0 21 21 14 0 0 0 0 63 22.2
30 7 0 0 7 0 21 0 0 0 35 60.0
35 0 0 0 0 0 0 7 7 0 14 50.0
50 0 0 0 0 0 0 0 14 0 14 100.0
80 0 0 0 0 0 0 0 0 14 14 100.0
Total 49 42 147 91 28 21 7 21 14 420
Users™ 143 333 381 231 500 100.0 100.0 66.7 100.0
accuracy, %
Kappa statistic 0.29 Overall classification accuracy, % 40.0
Table 4. The classification accuracy of Scots pine  Visually Predicted defoliation, % “Producer's”
needle samples (psc.) into four defoliation classes Zsefs:ﬁ:ggnv% oy >1025  >2560  >60 Total accuracy, %
Current year needles
up to10 0 112 14 0 126 0.0
>10-25 0 217 21 0 238 91.2
>25-60 0 28 63 0 91 69.2
>60 0 0 0 14 14 100.0
Total 0 357 98 14 469
Users™ 0.0 60.8 643  100.0
accuracy, %
Kappa statistic  0.35 Overall classification accuracy, % 62.7
Previous year needles
up to 10 28 91 0 0 119 23.5
>10-25 14 203 7 0 224 90.6
>25-60 0 7 56 0 63 88.9
>60 0 0 0 14 14 100.0
Total 42 301 63 14 420
"User's"
accuracy, % 66.7 67.4 88.9 100.0
Kappa statistic  0.50 Overall classification accuracy, % .7
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needle hyperspectral reflectance data. The overall clas-
sification accuracy did not exceed 40% when classi-
fying current and previous year needles and the kap-
pa statistic values were only at the “fair’ level of 0.26
and 0.29, respectively (Table 3). The needle samples
taken from crowns with none (up to 10%) and slight
(> 10-25%) defoliation had very similar spectral reflect-
ances, which caused low classification accuracy, es-
pecially for current year needles. User’s accuracy for
current year needles ranged from 0% to 36.7% and from
14.3% to 50.0% for previous year needles, i.e. the needle
samples were consistently misclassified into the wrong
defoliation classes. The classification accuracy of
needle samples taken from the moderately (>30-50%)
and severely (> 60%) defoliated crowns revealed that
spectral differences tended to increase according to
their level of defoliation. Current year needle samples
taken from crowns with 35% defoliation or higher were
correctly classified into their respective classes.
Combining the samples into groups according to
the UNECE definition (none: up to 10%; slight: > 10—
25%, moderate: > 25-60% and severe: over 60%) raised
the overall classification accuracy to up to 62.7% for
current year needles and up to 71.7% for previous year
needles (Table 4). The kappa statistic didn’t improve
significantly (Z = 1.78) for the current year needles
(kappa = 0.35) but it did (Z = 4.23) for the previous
year needles (kappa = 0.50) (Table 4). The very simi-
lar spectral reflectance properties of the needle sam-
ples taken from crowns with none (up to 10%) and
slight (> 10-25%) defoliation were the reason for rel-
atively low classification accuracy in this case too.
The overall classification accuracy increased signifi-
cantly and reached 100%, after grouping the samples

into three groups (up to 30%, >30-50% and
over 50%).

The nitrogen, phosphorus, calcium, magnesium,
potassium, iron, copper, manganese, zinc and boron
concentrations in Scots pine current (2012) and pre-
vious (2011) year needles are presented in Table 5.

Needle age had a significant effect on the con-
centrations of all the measured elements (Table 6). The
concentration of nitrogen in the previous year needles
of Scots pine was 4% higher, compared to the current
year needles, the concentration of manganese was 53%
higher and copper was 76% higher. Thus needle age
has to be considered when estimating the concentra-
tion of the chemical constituents in needles.

The needle samples were classified into three de-
foliation classes (up to 30%, > 30-50% and over 50%)
using the chemical constituent concentrations as dis-
criminating variables. Good and not significantly differ-
ent (Z = 0.48) classification accuracies (kappa = 0.83 for
current year needles and kappa = 0.90 for previous year
needles) were achieved. Thus the concentrations of
needle chemical constituents were found to be related
to Scots pine crown defoliation when relatively large
defoliation differences were investigated.

The accuracies for chemical constituent predic-
tions in Scots pine needles using their hyperspectral
reflectance data as discriminating variables and the
PLSR are summarized in Table 7. The prediction accu-
racy for needle chemical constituent concentrations
was dependent on needle age. For current year nee-
dles, a moderate positive linear relationship between
actual and predicted concentrations values was deter-
mined for nitrogen (R = 0.61), phosphorus and zinc (R
=0.57), calcium (R = 0.56), manganese (R = 0.49) and

Table 5. Concentrations of

- Number Current year needles Previous year needles

the me.asured elements in Element sarr?;l;les Average g;i?;?gg Minimum Maximum Average (?:l/?zi?c:g Minimum Maximum

Scots Pine needle samples Nitrogen, % 60 118 0.09 099 138 123 011 701 144
Phosphorus, % 60 0.13 0.02 0.09 0.16 0.10 0.01 0.08 0.13
Potassium, % 60 048 0.06 0.36 0.64 0.34 0.05 023 049
Calcium, % 60 0.18 0.03 0.13 0.27 0.39 0.08 0.21 0.65
Magnesium, % 60 0.10 0.01 0.07 0.15 0.07 0.01 0.04 0.11
Iron, mg/kg 60 52.64 63.44 24.50 542.00 73.38 28.96 45.10 186.00
Copper, mg/kg 60 5.18 1.50 3.00 11.00 3.31 1.75 1.80 12.60
mg;‘%ﬁnese' 60 43440 12060  189.00 75800 93574 25149 50000 1589.00
Zinc, mg/kg 60 35.97 8.69 20.10 58.90 43.51 10.87 21.10 74.30
Boron, mg/kg 60 14.28 3.27 8.55 22.50 12.09 3.64 4.70 21.50

Table 6. The Element Nitrogen Phosphorus Potassium Calcium Magnesium Iron  Copper Manganese Zinc Boron

difference in The difference in

element element

. concentrations

concentrations between previous 4.1 275 -41.8 52.0 45.3 211 759 53.1 13.8 -24.7

between previous year needles and

year needles and ﬁggg;:syear

current year Significance of 21 289x  231x 24 5.27 x 30 1.67 %

needles difference (p-value) 0.001  1.19x 10 1027 1041 2.26 x 10 0.015 1010 4.63 x 10 105 0.0003

I 2014, Vol. 20, No. 2 (39) I, (SSN 2029-9230 [

320



BALTIC FORESTRY

I ESTIMATING CROWN DEFOLIATION AND THE CHEMICAL CONSTITUENTS IN NEEDLES /.../ IlG. MASAITIS ET AL. I

Table 7. Model validation statistics illustrating the prediction accuracy of the PLSR models used to predict
the content of chemical constituents in needles employing hyperspectral reflectance as predictors and chem-
ical contents as response variables (numerator refers to the current year, denominator refers to the previous

year needles)

Element
Boron Calcium  Copper Iron Potassium Magnesium Manganese Nitrogen Phosphorus  Zinc
Statistics
R 033 056 0.20 0.26 040 0.20 049 0.61 0.57 057
0.60 0.35 0.04 0.21 0.33 0.10 0.31 0.46 049 013
R2 0.11 0.31 0.04 0.07 . 0.04 024 037 0.32 0.33
0.36 0.12 0.00 0.04 0.01 0.10 0.21 024 0.02
RMSEP 3.36 0.03 1.08 2019 0.05 0.01 91.90 0.08 0.02 6.66
2.85 0.07 0.66 14.03 0.05 0.02 245.30 0.09 0.01 11.19
MAPE 18.1 12.3 19.7 27.0 9.6 14.2 6.1 10.9 16.2
17.8 14.6 16.6 16.1 10.6 18.2 22.3 58 6.3 20.5

potassium (R = 0.4). MAPEs of less than 10% were
obtained for nitrogen (6.1%) and potassium (9.1%)
concentrations. The actual and predicted concentra-
tions for boron, copper, iron and magnesium had low
positive linear relationships (0.2 d=R d<0.33). In the
previous year needles, positive linear relationships
between actual and predicted concentrations were
determined only for boron (R = 0.6), phosphorus (R =
0.49) and nitrogen (R = 0.46). For current year needles,
MAPESs of less than 10% were obtained for predicted
concentrations of nitrogen (5.8%) and phosphorus
(6.3%). The relationship between actual and predict-
ed concentrations for other constituents was low (0.2
d=R d<0.33) for calcium, potassium, manganese and
iron or very low (0.01 d<=R d<0.19 ) for copper, mag-
nesium, and zinc.

These results show that the hyperspectral reflect-
ance of Scots pine needles can be used to predict the
concentrations of some chemical constituents in nee-
dles. The prediction accuracy was not related to the
concentration of a particular element. The best pre-
diction accuracy was obtained for nitrogen (MAPE =
6.1% for current year and 5.8% for previous year nee-
dles), phosphorus (MAPE = 10.9% for current year and
6.3% for previous year needles) and potassium (MAPE
= 9.6% for current year and 10.6% for previous year
needles) concentrations. The wavebands most tight-
ly related to the concentrations of latter chemical con-
stituents are presented in Table 8. No reliable predic-
tion results were obtained for copper, iron and mag-
nesium concentrations.

Discussion and Conclusions

The results of our study revealed that the major-
ity (~ 60%) of the optimal wavebands for Scots Pine
crown defoliation determination were located in the red
edge (680 nm—750 nm). This complements the findings
of other studies and proves that the red edge reveals
the most about tree stress. For example, Luther and
Carroll (1999) found that foliage reflectance at 711 nm
was the most sensitive to tree stress while investigat-
ing various levels of growth vigour in Balsam fir
(Abies balsamea (L.) Mill.). Carter and Knapp (2001)
discovered that an increase in reflectance at 709-718
nm was the most sensitive to plant stress, when they
investigated the effects of various stressors on the
foliage reflectance by various species, including
loblolly pine (Pinus taeda L.), radiate pine (Pinus
radiata D. Don) and longleaf pine (Pinus palustris
Miller). Eitel et al. (2010) analyzed stress-induced
changes in the concentration of chlorophyll in nurs-
ery-grown Scots pine seedlings and found that the
accuracy of the estimates improved after measuring
seedlings reflectance at 730 nm.

The majority of studies using hyperspectral im-
aging that had focused on the remote assessment of
crown defoliation in forest stands were based on the
use of remote sensing platforms as the carriers of
hyperspectral sensors. Working with airborne sensor-
acquired hyperspectral imagery has the advantage of
being able to utilize both the spatial and spectral in-

Table 8. The most sensitive wavelengths select-

ed according to PLS regression coefficients Chemical

constituent

Previous year (2011) needles Current year (2012) needles

Central wavebands, nm

Nitrogen

Phosphorus

Potassium

554.1,678.6; 711.8 405.7, 559.0; 715.7
403.5; 687.6; 841.2 403.5; 554.1;718.2
446.8; 570.2; 708.0 464.5;644.7, 750.8
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formation from the hyperspectral image. Incorporating
the hyperspectral image spatial factor usually increases
the prediction accuracies, as was shown by Moskal
and Franklin (2004). The full potential of airborne hy-
perspectral images was employed on pure aspen stands
to predict their defoliation. A very good regression
model (R? = 0.93) fit was achieved when spectral and
spatial data were used. When the spatial data were
eliminated from the regression model, the prediction
potential decreased substantially (R? = 0.54). Thus, the
remotely captured hyperspectral images are a product
of spectral reflectance properties that are significant-
ly affected by numerous factors, such as: the struc-
ture of the objects being sensed and the radiation
transfer properties through the atmosphere (Asner
1998, Roberts et al. 2004). Getting the hyperspectral
images from shorter distances usually increases the
potential for hyperspectral imaging to detect the prop-
erties inherent to the objects being studied, especial-
ly the chemistry of tree foliage (Kokally and Clark 1999,
Asner and Martin 2008). Thus, the hyperspectral im-
agery investigations under laboratory conditions could
be considered an accurate method as it can potential-
ly deal with physical and chemical properties of the
objects under investigation.

In our study, using pure needle spectral reflect-
ance data as predictors enabled us to precisely clas-
sify Scots pine needles into three defoliation classes.
A very good classification precision of needles into
the same three defoliation classes was also achieved
using only needle chemistry data as predictors. This
proved that the pure needle reflectance spectra have
strong relationship with needle chemical constituents.

However, the success at predicting concentrations
of chemical constituents in Scots pine needles by their
hyperspectral reflectance data was variable. The con-
centrations of nitrogen, phosphorus, zinc, calcium,
boron and potassium could be predicted using Scots
pine needle hyperspectral reflectance data obtained
under laboratory conditions, although only moderate
prediction accuracies were achieved. Concentrations
of copper, iron, and magnium were not found to have
a relationship with pine needle hyperspectral reflect-
ance spectra.

In our study, the foliage of only one species (Scots
pine) was used to investigate the relationships between
the spectral reflectance of needles and their chemical
constituents. This prevented the prediction accuracy
being influenced by spectral reflectance differences due
to different species, but it may explain why the predic-
tion accuracies achieved in our study were relatively
low compared to the results of similar studies by other
authors. For example, a study conducted by Ferwerda
and Skidmore (2007) showed prediction successes for

phosphorus, potassium, calcium, magnesium and sodi-
um concentrations when three tree species, willow (Salix
cinera L.), mopane (Cholophospermum mopane) and
olive (Olea europaea L), and one shrub species, heather
(Calluna vulgaris L), were investigated together. The
relationships between the concentrations of chemical
constituents and foliage spectral reflectance data may
possibly have been improved by the differences in the
foliage chemical constituents between the species,
which could have been caused by the covariance with
other properties of individual species. This was shown
in the study by Axelsson et al. (2013), in which con-
centrations of nitrogen, phosphorus, potassium, calci-
um, magnesium and sodium in the foliage of various
Indonesian mangrove species were investigated. Pre-
diction accuracies for phosphorus, potassium, calcium,
sodium and magnesium were strongly influenced by one
mangrove species that had much lower concentrations
of these elements.

Two primary conclusions are drawn from this
study:

1. The hyperspectral reflectance data allowed us
to reliably (100% overall classification accuracy) clas-
sify the samples into the following defoliation class-
es: up to 30%, >30-50% and over 50%. However, the
Scots pine needle samples were not accurately classi-
fied using hyperspectral data acquired under labora-
tory conditions into the nine defoliation classes used,
when the trees are visually assessed in the forest.

2. Concentrations of nitrogen (R = 0.61, MAPE =
6%), boron (R = 0.6, MAPE = 18%), phosphorus (R =
0.57, MAPE = 11%), zinc (R = 0.57, MAPE = 16%), cal-
cium (R = 0.56, MAPE = 12%), manganese (R = 0.49,
MAPE = 14%) and potassium (R = 0.4, MAPE = 10%)
could be predicted using Scots pine needle hyperspec-
tral reflectance data obtained under laboratory condi-
tions. The concentrations of the elements in current and
previous year needles were significantly different. The
concentrations of nitrogen, phosphorus, zinc, calcium
and potassium were more successfully predicted using
the hyperspectral reflectance data from the current year,
whereas the concentration of boron was more success-
fully predicted using the previous year data.
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OLHEHKA JE®OJUAIHNUN KPOH U XUMHUYECKOI'O COCTABA XBOU COCHBI
OBBIKHOBEHHOM (PINUS SYLVESTRIS L.) IO JAHHBIM JABOPATOPHOI'O
I'MINEPCHEKTPAJIBHOI'O CKAHUPOBAHUSA

I'. Macaijituc, I. Mo3repuc n A. Ayrycraiituc
Pesziome

MeTobl, OCHOBAaHHBIE HAa CIEKTPOMETPHPOBAHUU HCIIOJIB3Ys 30HBI CIIEKTPAJIBHOTO OTPaXKCHHS 3a IpelelaMu
YYBCTBUTEIBHOCTH YEJIOBEYECKOTO 3PEHMS, SIBIIIOTCSI Hanbonee akTyaJbHBIMH B OOJIACTH COBPEMEHHBIX HCCIIEOBAHUM
OLIEHKH CAaHHTAapHOTO COCTOSHUSA Jeca. B Hacrosmel paboTe medonnanus KpOH U XUMHYECKHH COCTaB XBOU COCHBI
0OBIKHOBEHHOH (Pinus sylvestris L.) onleHNBaINCh Ha OCHOBE JAHHBIX TUIEPCIIEKTPATEHOTO CKAHUPOBAHMS XBOH, MOTYIEHHBIX
B 1a00OPaTOPHBIX YCIOBUSIX UCIOJIB3YsI MOPTATUBHYIO runepcnekrpanbayto kamepy VNIR 400H, paGoTaronryto B quamna3zone
400-1000 uM. UccnenoBanuchk 0Opa3ubl XBou 67 IepeBbEB, MPOU3PACTAIOMINX B JIBYX CIIEIBIX COCHOBBIX JIPEBOCTOSAX B
BOCTOYHOU yacTu JIUTBEI, JAedosimanus KpoH KOTOphIX Konebarack oT 0% mo 80% (ucmonb3ys 5% rpagamnuro). s
00pabOTKN MOMYYSHHBIX T'MIIEPCIIEKTPAIBHBIX AAHHBIX OTPAKCHHS HCIIOIB30BAJICS aHAIU3 OCHOBHBIX KOMIIOHEHTOB U
JMHEWHBIH JUCKPUMUHAHTHBIA aHAIN3 JUIS KIacCu(UKanul 00pa3IoB XBOHU 110 KiaccaM Je(oInanin, a perpeccus JaCTUIHBIX
HAMMEHBIINX KBAJAPaTOB — JUIS MPOTHO3UPOBAHUS KOHIIEHTPALUMH XUMHYECKHX KOMIIOHEHTOB XBOM. YCTaHOBJIEHO, YTO MO
JAHHBIM THIIEPCIEKTPATBHOTO OTPAKCHUS ONPEACIUTh Kiacchl Ae(onuanuy, UCIONb3ys ISITHIIPOLUEHTHYIO CTYIEHB,
SBISIETCS 3aTPyIHUTEIBHON 3ajqadeil (kamma craructika cocraBmwia 0.29 u 0.26 mis XBOM NMPOIUIOTO M TEKydYero roja,
COOTBETCTBEHHO). OfiHAaKO, TPYIIIHPOBKA 00pa3IOB MO YeTHIpEM KiaccaM jedonmanuy, B COOTBETCTBHU C PEKOMEHIAIHEH
UNECE/FAO (medonmarust orcyrcTByeT, MeHee 10%, HesHaunTenbHas: 10-25%; ymepennas: 25-60% u cumbpHas: Oomee
60%), cyIecTBEHHO YTy4IINIO BO3MOXKHOCTH KJIaCCH(PUKAIINH, UCTIONb3YsI MPOLILIOTOAHIOI XBOIO (Kala CTaTHCTHKA PaBHA
0.50) 1 HecyIIeCTBEHHO, HCIIONB3Ys XBOKO TeKydero rofa (kammna craructuka 0.35). [pynnupoBka Ha Tpu Kiacca aedonuayu
(menee 30%, 30-50% u Gomee 50%) Obuta Ge3ommO0YHa (Kamma cTaTuCTHKH paBHBI 1.0). YCTaHOBJICHO, YTO 1O JaHHBIM
THUIEPCIEKTPAaTbHOTO OTPaKEHHS B XBOE TEKYIIEro Tofa TaKXKe MOXKHO C yMEPEHHOH TOYHOCTHIO IPOTHO3HPOBATh
KOHI[EHTPAllMH CIEIYIOINX XHMHUYIECKHX 3IE€MEHTOB: a30Ta (K03(pQHUIUEHT KOppensuu Mexay (GpakTuaecKuM U
MPOTHO3MPOBAHHBIMH 3HAYECHUSIMH, OLICHEHHBIH C UCIIONB30BaHUEM Kpocc-ipoBepkH, R = 0,61), docdopa (P = 0,57), uunka
(R =0,57), xaneiust (R = 0,56), mapranna (R = 0,49) u xanus (0.40), u cnaboit Tounocteio: 6opa (R = 0,33), xenesa (R =
0,26), maraus (R = 0,20) u meru (R = 0,20).

KiioueBble cjI0Ba: rMIEPCIEKTPAIbHOE OTPAKEHUE, TUIIEPCIICKTPAIbHBIE U300paKeHUs, COCHa OOBIKHOBEHHAS,
nedonanys KpOHbl, XUMHYECKHE IIEMEHTHI XBOH
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